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An approach is proposed that permits obtaining an effective algorithm for 
solving questions of planning an experiment without involving analysis of 
the object sensitivity function. 

Let a given model L a containing a certain set of unknown quantities a = {ak}k:z~ p be 

considered. With minimal error find those a for which it is known that the observation 

sample u 6 = {ui6}i=l]m has a prototype u = {ui}i-l,m: 

ut = ~ + ~ i ,  ~ =  I , ~ ,  

that expresses a solution of the equation 

t a u  = ~, 

in a given discrete set @ = {ei}i=l,m, where u i = uloi, under the condition that the ob- 

servable elements ui6 deviated from the prototype ui by the known quality 

I l u ~ .  ~11 ~ 8i, i = 1, m, 

where the norm of the observation space governing the mode of estimating the measurement 
error can be, say, the r.m.s. 

(i) 

(2) 

(3) 

b~--~II (~-u-i) 2 , 
i=l 

the absolute 

1 ~ i ~  

o r  s o m e  o t h e r .  

In the formulation presented for the abstract inverse problem, (i)expresses ~h'~ sfm- 
plest form of the observations. Meanwhile, utilization of its more general form when quan- 
tities are observed that are functions of the state u is allowed. The approach proposed be- 
low for planning the observation u 6 allows such a generalization. 

Equation (2) describes the initial model that can be set in correspondence with the 
process being studied. It is assumed everywhere below that a unique and stable solution 
exists for the given a and f. No constraints are imposed on the form of the operator and 
any models utilized in practice with both lumped and distributed parameters are assumed in 

the consideration. 

Condition (3) is one of the main conditions in determining the unknown properties of 
an object. According to it, the desired solution should assure closeness of the states ob- 
served and those computed by models to the accuracy of the measurement error. Let us turn 
attention to the fact that condition (3) will later not require the postulation of a measure- 
ment error distribution law as well as assignment of a mathematical expectation and covaria- 
tional matrices to them. 

Within the framework of the formulation made, let us answer the question of how to plan 
an experiment and construct an optimal observation plan in order to determine the desired 
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properties of an object with the least possible identification errors when taking account of 
the action of a broad class of measurement interference and modeling errors. 

The degree of generality taken for the original mathematical model of the object re- 
quires absolutely taking account of a number of features of the indirect representation of 
the dependence of the desired quantities on the initial data. From the viewpoint of ques- 
tions on numerical realization in this case, the influence of the observation interference 
on the stability of the calculations, the absence of a sufficient sensitivity of the states 
function on the variations of the parameters being identified, and also expansion of the do- 
main of allowable values of the desired quantities must be taken into account in this case. 
According to [i] determination of the object properties with the features noted taken into 
account should be performed by satisfying two demands. Firstly, the selection of the desired 
solution must be consistent with the error in the initial data, and secondly, execution of 
the constraint of the domain of allowable solutions of the corresponding inverse problem is 
certain. These demands can be satisfied in the most complete volume by using the regulariza- 
tion method [i]. In the modification [2] where formulation of the inverse problem in the 
form (i)-(3) is taken into account and the possibility of simultaneously finding several 
quantities at once is also considered, the desired values a in the operator L= are deter- 
mined as the solution of the variational problem 

= A r g i n f  ~[a] ,  A L= {a:L~u= [, Hu~--uill~6i, i =  l, m}, 
aeaL (4) 

where ~[a] is a continuous and nonnegative stabilizing functional to whose domain of defini- 
tion the desired values of a belong. 

Let us require execution of experiment planning in conformity with the mentioned fea- 
tures and let us examine the possibility of solving the planning problem by using the regu- 
larization method according to the scheme (4). The further exposition is determined com- 
pletely by the following property of this scheme. 

THEOREM. If the element a is a solution of the problem (4), then 

l l . ~ - - u z l ~ l l  = ~z, i =-1,  m. 

The theorem presented, whose proof is performed analogously to [3], shows that if a 
known vector a with respect to which the identification error v = fla - all must be mini:nized 
is considered, then the magnitudes of these latter can be determined as the solution of the 
operator equations 

6 

where the functions ui[a(v) are found from (2) at given observation points 0 i under the con- 

dition that the stabilizing functional ~[a] is minimized by the values a(v) in a set whose 
element differs from the etalon by not more than the quantity v: 

a (v) = Arg inf ~ [a], A (~) = {a: l la- -  all ~ ~}- 

The formulation (5) and (6) is equivalent to the problem (4) under the additional con- 
dition IFa = aIF ~ v. If the problem (4) is solved without this condition, but then a norm 
of the deviation from the etalon a is found, then for convex ~[a] and strictly normali~ed 

^ = ~(~) observation spaces there always exists a single element a - - �9 The quantity v is here 
related uniquely with the found value ~ while the additional condition expresses the finite 
error of identification that does not influence the solution itself of the problem (4). 

Then if a single element of the form (6) corresponds to a given v from the domain of 
definition of the problem (5), then the former is also a solution of (4) for a certain ob- 
servation point of the state function of the model (2) a ,(v) ~ ~. Therefore, by selecting 
some element a(V), a v can always be found that will satisfy (5) at a given observatio~point. 
If the values of v are determined in a certain set of allowable measurement points, then in 
the long run a distribution can be obtained of the identification error as a function cf the 
observation point location. Hence, the required optimal points are found that assure iden- 
tification with the greatest possible accuracy. 
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Therefore, planning an experiment that proposes execution on the basis of the construc- 
tion of locally optimal planes in the formulation (5) and (6) reduces to determining the 
error ~ in a set of parameters of interest in the model under consideration. In such an 
approach the final optimal plan, the most informative actions on an object, the fiducial es- 
timate intervals, the guaranteed identification accuracy, etc., can be determined by analyz- 
ing the behavior of the minimum of the identification error v in the variations of a that 
are set up by a certain set A of assumed properties of the object of investigation as well 
as during changes of other model parameters of interest from the planning viewpoint in given 
intervals. 

Let us mention the general possibilities of experiment planning that are allowed by the 
formulation (5) and (6). 

Firstly, it is necessary to note that the so-called guaranteed approach within whose 
framework postulation of the distribution law for the measurement errors, their mathematical 
expectation, and the covariational matrices is not required is expressed in this case. 
This means that the solutions of the planning problem can be obtained under the most general 
assumptions about the kinds of measurement interference, including even systematic errors. 
Furthermore, the formulation can be used for planning experiments associated with the deter- 
mination of any kinds of desired quantities including for reverse boundary, coefficient, geo- 
metric, and any other problems. Its utilization is independent of the initial model (2) where 
both multidimensional and different nonlinear equations can be there as well as models with 
lumped and distributed parameters. Finding the fiduciary identification intervals of several 
unknown quantities, by which the conditions for conservation of a mutually one-to-one corre- 
spondence are not spoiled, is possible. 

The domain of allowable solutions and the a priori information about the desired quanti- 
ties can be given under the most general assumptions about their functional properties. In 
the case of incomplete a priori information, a constraint on the retrieval of the desired 
properties from the condition of consistency of none of the interpretations of the available 
sets of input data is assumed. Regularization of the domain of allowable solutions is per- 
formed with the greatest possible degree that is determined by the selected method of approx- 
imating the desired quantities. Taking account of any quantitative and qualitative a priori 
information about the desired quantities and state functions is possible. Agreement with 
the observations is realized separately at each measurement point. An important feature of 
the approach proposed is the fact that in contrast to planning methods based on analysis of 
the sensitivity function, it permits not only finding the observation plane optimal in accu- 
racy but also the setting up of the identifications allowable for this error. 

The formulation (5) and (6) expresses a constitutive approach, whose numerical realiza- 
tion is oriented towards a standard mathematical and programmed support. Such an orientation 
permits a significant reduction in the labor-intensive development of appropriate planning 
algorithms. 

The proposed locally optimal planning within the framework of the formulation (5) 
and (6) reduces to solving three self-consistent subproblems. The first is the minimization 
of a convex stabilizing functional in a set with a limited measure of the deviation from the 
etalon. The second is determination of the object state from its known properties as well 
as by given external and boundary actions. The third is solution of a system of nonlinear 
equations and reduces in the case of one desired quantity to the solution of one equation if 
the initial data are not overdetermined. 

From the viewpoint of their numerical realization the listed subproblems have the fol- 
lowing singularities. A broad class of functionals fl[a] minimizable according to (6) after 

parametrization of the desired quantities a k = {ak(s , Sk(s163 is reduced to qua- 

dratic functions in the unknown approximation coefficients ~k (s according to the basis 
functions Sk(Z). In addition the measure of the deviation of the desired functions from the 
etalon a can be selected in the form of a norm differentiable with respect to the desired 

coefficient ~k (s In this connection it turns out to be possible to construct effective 
and fast-response algorithms to solve the first subproblem. 

In the second case it is assumed that the domains of definition and the values of the 
operator L a satisfy requirements that assure a unique and stable solution of (2) for any 
a @ A. It is also considered that the model under examination is identifiable by the desired 
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quantities. All these conditions are known for a broad class of mathematical models, and 
many algorithms for the solution of equations of the form (2) have been worked out up to the 
level of standard subprograms. 

Generally speaking, the solution of the thlrd subproblem can be ambiguous, as will be 
shown in the examples presented below. In such'cases among the elements a(v) that satisfy 
(5) those values should be selected to which the least magnitude of the stabilizing function- 
al a[a] corresponds. 

Algorithmically the proposed approach of locally optimal planning is an iteration pro- 
cess in the general case, that includes execution of the following typical actions. ~irstly, 

the sampling of the observations {ui6}i=T ~ is simulated. Then for given {~k}k=X~-,~, the 

{ak(V)}k=1--7-,~ are sought to satisfy (6). Furthermore, the state of the object is determined 

from (2), after which it is compared with the observations {ui6}i=1~ m. All the operations 

are repeated until values {Uk}k=T~ are found that result in satisfaction of the conditions 

for the agreement of (5) with a given degree of accuracy. 

In addition the possibility of obtaining analytic solutions is also assumed, i.e., in 
a number of cases exact final expressions of the optimal plans and their corresponding mini- 
mally allowable identification errors can be found. 

Let us display the practical possibilities of the approach described as well as its 
fundamental realization features by examples of certain planning problems that have known 
solutions. The problems being examined below permit a complete representation to be obtained 
of the circle of questions that are included within the framework of the formulation (5) and 
( 6 ) .  

Let be considered a given mathematical model 

Ou _ O z u  +-asinz~x, O < x < l ,  t>O;  (7) 
Ot Ox z 

u l t = o = O ,  ulx=o = O, ul.=~ = O, 

with an unknown coefficient a = const to be determined. An optimal observation plan is con- 
structed for it in [4] with measurements performed according to the law 

.~ (t) = ~ (xi, 0 + ~ie (0, i = 1, & 

where E i are arbitrary random numbers, e(t) is a given nonrandom function simuiating the 
measurement trend, say, and {xi}i=i~-,-,~ are the observation points. 

Let us determine the coordinates of the optimal observation points and let us also es- 
tablish the properties of the identification estimates by using the proposed approach. 

In conformity with (6) and also the recommendations in [2], let'us introduce the fol- 
lowing minimization subproblem 

�9 r a in  m a x  lal, 
aGR ~ 

l a - -  ai ~ ~. 

It has the solution a (v) = d- v. In the case m = 1 adequate for the determination of one 
coefficient a, (5) has the following final expression 

1 - -  exp  ( - -  ~zt) s in  z~x %- ee (t) " m a x  lee (t)l. n]gX ~ 
x, t ~ Z  x,  t (8) 

Among all the values of v determined by (8) for given ~, e, and x, the least turns out to 
be in the case when the function [i - exp(-~it)]sin ~x achieves its maximum in the domain 
Q = {(x, t): 0 < x < i, t > 0}. We hence obtain that for any functions e(t), interference 
~, and t > 0 measurements at the point Xop t = 0.5 assure identification of the coefficient 
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of the model (7) with a minimal error. An analogous result is also obtained in [4] where 
the optimal plan was constructed by using the criterion of D-optimality. Let us note here 
that the method utilized here permitted the desiredsolution to be obtained under more gen- 
eral assumptions about the properties of the measurement interference that those made in [4]. 

Analysis of the solutions of (8) for specific functions e(t) permits determination of 
further properties of the identification errors as well as the allowable error estimates of 
the valuesof the desired coefficient required in conformity with the guaranteed approach. 
As an illustration, let Us take the function e = T - 2t, T # 0 describing the conditional 
trend with constant rate in the segment 0 < t < T. In this case (9) has several roots in- 
cluding the value ~ = 0 also. It follows from the condition of the minimum of the stabiliz- 
ing functional fl = maxla I introduced for the identifiable coefficient that the root having 
the greatest absolute value should be that desired. It can be shown that such a root always 
exists for (8) while for e > 0 it has the value ~ = 2e/sin~x. Then the desired coefficient 
having the minimal identification error in observations with the mentioned measurement inter- 
ference characteristics is expressed by the quality a (v) = a - 2e. 

Another case, when e < 0, is more preferable since a small identification error is as- 
sociated with it. In this sense the value ~min = 21el can be the majorant to obtain further 
properties of the error ~. In particular, a dependence of the allowable absolute error of 
measurement A = maxIu 6 - u I on the guaranteed identification error can be established: Aall. = 

2T~guarant., or in relative quantities 6all. = 2~2T/[I - exp(~2T)]Dguarant., where 6 = 

maxlu6 - ul/maxlul, ~ = la - al/a. It is hence seen that identification of the model (7) to 

identical accuracy but for different lengths of the observation interval requires that the 
greater the value of T the smaller the measurement accuracy, and vice-versa. For T > 0.5 
determination of the coefficient a is guaranteed with both an absolute and relative error 
that does not exceed the magnitude of the measurement error. 

Now we turn to examination of the problem associated with determining the coefficient 
of the highest derivative of the state fucntion. We assume that the value a = const must 
be found in the mathematical model 

au o~u 
a t  8x 2 

, O , ~ x < : o o ,  t > O ;  

uit=o = Uo (x), ul.=o = O. 

( 9 )  

It is known in this case [4] that if the initial distribution has the form u0(x) = sink0~x 
where k 0 ~ I is an integer and the observations are performed in the half-interval 0 < x < i, 

then points with the coordinates Xopt (k) = ((2k -- l)/2)/k0, k = 0, k 0 - i are optimal. 

Reasoning analogous to that presented above permits obtaining the following consistency 
condition 

max [exp ( - -  k ~ 2 ~ )  [ 1 - -  exp (k~vt )]  sin ko~X + el = max 181. 
X,t  x , t  

It shows that for any ~ and r the minimal identification errors are achieved where the func- 
tion Isink0~x I has a maximum. Hence, we find the mentioned points Xopt(k). Exactly as 
above, the optimal observation coordinates are obtained under the most general assumptions 
relative to the values of a and the properties of the interference E. 

Numerical modeling of the measurement interference e permits development of the inves- 
tigation of the identification error properties for the model under examination. Results 
obtained during simulation of measurement interference with a normal distribution law and 
zero mathematical expectation are presented in Figs. I and 2 for the case m = i. 

The found relative error function ~(x) (Fig. i) shows the nature of the influence of 
accuracy of the identification of the desired parameter a on the change of the observation 
point coordinates. Obtaining functions of such form together with determination of the lo- 
cation of the optimal measurement points and finding the fiduciary interval of the accuracy 
of the inverse problems solutions is intended for analysis of changes in the identification 
error in the case of deviation of the observations from the optimal plan. 
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Fig. I. Relative identification error for the model (9) during 
simulation of the measurement interference with a 5% level of 
observation errors: i) a = 0.i; 2) i; 3) i0. 

Fig. 2. Minimal relative identification error of the model (9) 
as a function of the measurement interference level: values of 
1-3 are the same as in Fig. i. A, %. 

Let us note that a further study of the behavior of the funct&on D(x) during simulation 
of the operation of any other observation interference of practical interest, including sys- 
tematic errors, also permits finding the fiduciary intervals of identification error and per- 
forming an appropriate analysis of the accuracy of the inverse problem solution in any direc- 
tion of interest. 

The dependence Pmin(~) (Fig. 2) expresses the value of the allowable interference level 
and the associated guaranteed identification error. As is seen, obtaining the desired coef- 
ficient with an error not exceeding the measurement error is guaranteed for a < 0.i in the 
case under consideration. 

The identification accuracy of the model (9) as a function of the volumes of the obser- 
vation samples n = 50, i00, 500, i000 was, respectively, [~ - a(v)I/~ = 0.08157; 0.08126; 
0.04; 10 -12 . The results obtained reflect the known property of consistency of the es:imates 
obtained. Let us note that the assumption of noncorrelativity of the measurement erro::s and 
the normality of their distribution law turns out to be essential here. There is no mono- 
tonic improvement in the estimates as the sample volume increases during deviation from these 
assumptions and a certain optimal value of the number of measurement# n exists. Developing 
the investigation in this direction, the best measurement times can be found that will assure 
minimality of the identification error for a given number n. 

We now show the possibility of the proposed approach when it does not seem possible to 
obtain (5) in the form of explicit expressions relative to the desired errors v. In such 
cases the construction of the optimal observation plan is based completely on a numerical 
analysis that can also be performed successfully within the framework of the formulation (5) 
and (6), as in the analytic methods applied above. 

Let a given model be considered 

co 8u - O a t  8x (k-~--~ ), xo<x<&.  

ul~=o = Uo (x),  Xo < x < x~:; 

--k  ~ Ou 
= % ( 0 ,  t > o .  

(lO) 

805 



o,4 

0,3 

o,2 

0,1 

x 

I I i �9 

o 0,0075 o, olso o, o22s x 

Fig. 3. Relative identification 
error of the model (i0); i) A = 
1%; 2) 5; 3) i0; 4) results of 
[ 7 ] .  x ,  m. 

{uij6}i = " Let us examine the observation planning problem for it 1,-~m =z,n given in the domain 

Q = {(x, t): x 0 < x < Xk, 0 < t < T} for the determination of the heat flux qz(t), say. 

In conformity with (6) we introduce the following extremal subproblem 

t 

q~V)=Arg  inf fl[ql] , A ( v ) = { q l : . [  ( $ - - q , ) 2 d t < ~ } ,  ( 1 1 )  
ql~A(v) 0 

where A (v) is the domain of allowable solutions defined, say, as the class of triply differ- 
entiable functions, fl is the stabilizing functional selected according to the recommendations 
in [5, 6], and ~z is the standard solution. 

The desired value of the error v allowable at a given observation point x i is deter- 
mined by the solution of the system 

m a x  luaq- u (xi .  tj)l q~,,)l = 6 .  i = 1. m. 
I <~i<~n 

(12) 

This latter can be represented as 

m 

v = Arg rain ,~, [ max [u~i--- u (xi, tj)l q~v) I - -  8u] ~. 
" 'v 1 ~<1 ~ < n  

By using the formulation (ll) and (12) the model case considered earlier in [7] was 
investigated. Assignment of the standard value qz, approximation of the desired function qz 
as well as determination of the identification accuracy were all done in conformity with the 
work mentioned. 

The dependence found for the relative error on the observation point coordinates is 
shown in Fig. 3 for m = i for different values of the relative measurement errors. The ob- 
servation interference was simulated by a pseudorandom number sensor with a normal distribu- 
tion law and zero mathematical expectation. 

The results obtained reflect the fundamental asymptotic properties of the error in iden- 
tification by the regularization method according to the scheme of particular consistency 
when the measurement interference level tends to zero. Let us turn attention to the error 
in determining the flux obtained in [7] that even for 6 = 0 exceeds the error allowed by the 
scheme (4) when 6 # 0. As the results obtained earlier [5, 6], this comparison shows that 
a number of algorithms allow significant identification errors, despite the realizable con- 
straints on the domain of allowable solutions and the satisfaction of the consistency condi- 
tions with errors of the initial data. 

This latter indicates that if the limitation of the domain of allowable solutions can 
generally assure the stability of the solution of an incorrectly posed problem, then execu- 
tion of a sufficient degree of regularization, which should certainly be consistent with the 
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selected method of parametrization of the desired quantities, is necessary to obtain satis- 
factory accuracy. In the opposite case the solution can be stable and consistent with errors 
in the initial data but have unsatisfactory accuracy (Fig. 3) or have nothing in common with 
its true form [5, 6]. 

Summarizing the investigation conducted, we note the following fundamental results. 
The proposed experiment planning approach permits taking account of features of the implicit 
representation of the relation between the observable and the desired quantities when the 
appearance of a weak state function sensitivity turns out to be essential and expansion of 
the domain of allowable solutions of the corresponding inverse problem occurs. The met:hod 
based on it permits carrying out a multilateral study of the identification accuracy as well 
as solving a broad circle of practical questions under the condition of operation of the 
most diverse measurement interference and modeling. 

It is shown that both an analytic and an effective numerical determination of observa- 
tion plans optimal in accuracy, finding the ultimate identification error estimates and their 
fiduciary intervals, investigation of the action of different kinds of interference inr 
ing systematic errors, the build-up of the interference level necessary to obtain guaranteed 
identification errors, and the exposure of the most informative observation domains are pos- 
sible. 

In conclusion, we emphasize once again that the ultimate estimates obtained for t~e 
identification accuracy are possible only for a suitable constraint on the domain of allow- 
able solutions of the problem under consideration. All this makes study of the questicn of 
methods of limiting a given domain of allowable solutions and the corresponding identifica- 
tion error urgent in the theory of incorrectly posed problems. Obtaining recommendaticns 
relative to the necessary degree of contraction for the most typical methods of parametrizing 
the desired quantities is especially important in those cases when it is impossible to do it 
explicitly, as in the regularization method, say. 

NOTATION 

u, object state function: f, external actions on the object; La, model that can he set 
in conformity with the object being studied; a, desired quantities characterizing the cbject 
properties; p, their number; u 6, observations; u, observation prototype; @i, observaticn 
points; m, number of observations; n, number of measurements at a given observation point; 
x0, Xk, observation domain boundaries; ~, measurement interference; ~, guaranteed measure- 
ment error; A, absolute measurement error; v, identification error; D, relative identifica- 
tion error; A, domain of allowable solutions of the inverse problem; ~, stabilizing func- 
tional; c, specific heat; ~, heat conductivity; u0, initial distribution; qz,2, boundary 
heat fluxes; and a, standard value of the desired quantity. 
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